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Abstract 

 In the present paper a two fluid model for pulsatile blood flow through stenosed 

artery has been developed. The model consists of a core region of suspension of all 

the erythrocytes assumed to be a Bingham plastic fluid and a peripheral layer of 

plasma as Newtonian fluid. The analytic expressions for blood flow characteristics 

namely velocity, wall shear stress, flow rate, plug core radius and effective viscosity 

are obtained by using perturbation method. The effects of body acceleration and slip 

velocity have been discussed. We have shown the variation of flow variables with the 

different parameters and discussed with the help of graph. It is observed that the 

velocity and flow rate increases but effective viscosity decreases, due to a slip 

velocity. Body acceleration further enhances the velocity and flow rate. 

 

Keywords: Slip velocity; Body acceleration; peripheral plasma layer; Bingham 
plastic. 

 

Introduction 

The behavior of blood flow is highly affected by arterial stenosis. Due to the presence 

of arterial stenosis normal blood flow is disturbed. Partially occlusion of blood vessels 

due to deposition of lipids, such as cholesterol commonly known as stenosis, is one of 

the most frequently occurring diseases in cardiovascular system of the human. The 

Newtonian behavior may be true in larger arteries, but blood being a suspension of 

cells in plasma exhibits a non-Newtonian behavior at the low shear rates in small 

arteries. Numerous investigators have cited hydrodynamics factors playing an 

important role in the formation of stenosis and hence the mathematical modeling of 

blood flow through a stenosed tube is very important. Many authors have dealt with 

this problem, treating blood as a Newtonian fluid and assuming the flow to be steady. 

 

Several authors have studied the pulsatile nature of blood flow considering blood as a 

Newtonian fluid and non-Newtonian fluid also. They found that under normal 

conditions, blood flow in the human circulatory system depends upon the pumping 

action of heart. The heart pump produces the pressure gradient throughout the arterial 

and venous network. This pressure gradient consists of two components, one of which 

is constant or non fluctuating and other fluctuating or pulsatile. [10-12], have studied 

the pulsatile flow of non –Newtonian fluid in stenosed artery by considering blood as 

Casson fluid and Herschel –Bulkley fluid. Chaturani & Sumy [2] have investigated 

the effects of non-Newtonian nature of blood and pulsatality on flow through a 

stenosed tube.  

Along with the pulsatality, Body acceleration is an important factor in the study of 

blood flow. It plays a very important role in the normal as well as diseased arterial 

system. Shahed [14] studied the pulsatile flow of blood through a stenosed porous 
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medium under periodic body acceleration. They present a model of blood flow in a 

partially occluded tube subjected to both the pulsatile pressure gradient due to the 

normal heart action and periodic body acceleration. Closed form expressions have 

been obtained for the axial velocity, flow rate, fluid acceleration and shear stress. 

Sud and Sekhon [17] have studied the pulsatile flow of blood through rigid circular 

tube subject to body acceleration, treating blood as a Newtonian fluid. Under 

exceptional circumstances, however humans may also be subject to whole body 

acceleration (or vibration) For eg. while riding in a vehicle or while flying in an 

aircraft or spacecraft, man may unintentionally be subjected to accelerations. Though 

human body can adapt to changes but prolonged exposure to high level unintended 

external acceleration may cause serious or even fatal situations on account of 

disturbances in blood flow. Headache, abdominal pain, increase in pulse rate, loss of 

vision, venous pooling of blood in the extremities and hemorrhage in the face, neck, 

eye sockets, lungs and brain are some of the symptoms which result from prolonged 

accelerations. Various investigators [7, 19, 20] have analyzed the effect of body 

acceleration on pulsatile flow of casson fluid through mild stenosed artery. They 

studied the effect of pulsatality and body acceleration through stenosed artery treating 

blood as casson and H-B fluid.  

Several authors carried out the role of slip velocity in the blood flow through stenosed 

arteries and suggested the presence of red blood cells occurring in the slip condition at 

the vessel wall. [5,8] have developed mathematical models for blood flow through 

stenosed arterial segment, by taking a velocity slip condition at the constricted wall. 

Pulsatile flow of blood through a catheterized artery in the presence of different 

geometry of stenosis with a velocity slip at the stenotic wall has been investigated by 

[1, 18]. 

In all the above mentioned studies, only single layered blood flow has been 

considered but some theoretical and experimental analysis were performed to study 

the two layered blood flow under different physiological conditions. Srivastava, 

Rastogi & Vishnoi [16] have considered the two layered suspension of blood flow 

through overlapping stenosis. [4, 9, 11] have considered two-phase arterial blood flow 

through a composite stenosis. Some authors also considered the two layered flow with 

the effect of magnetic field. They studied the two fluid nonlinear mathematical 

models for pulsatile blood flow through stenosed arteries. He studied the pulsatile 

flow of a two fluid model for blood through stenosed narrow arteries at the low shear 

rate, assuming the suspension of all the erythrocytes in the core region of blood vessel 

at a Casson fluid and plasma in the peripheral layer as a Newtonian flow. 

In the present model we have considered the two layered blood flow through stenosed 

artery. With the above motivation an attempt has been made to study the effect of slip 

velocity and body acceleration on the different flow variables assuming the body fluid 

blood as a model with the suspension of all the erythrocytes in the core region as 

Bingham plastic and the peripheral as a Newtonian fluid. We have seen the effect of 

various parameters on the different flow variables and compared with the existing 

models.  

Mathematical formulation  

Consider an axially symmetric, laminar, pulsatile and fully developed flow of blood in 

the axial direction through circular tube with an axially symmetric mild stenosis. It is 

assumed that the body fluid blood is represented by a two fluid model with a central 

layer of suspension of all erythrocytes as a Bingham plastic fluid and a peripheral 
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layer of plasma as a Newtonian fluid. The artery length is assumed to be large enough 

as compared to its radius so that the entrance and exit, special wall effects can be 

neglected. The geometry of the arterial stenosis is shown in Fig. 1. Since the stenosis 

present in the artery is considered to be mild, the radial transport of blood is negligible 

and thus we have neglected the radial velocity of the blood in this study. Hence in the 

present study, the flow of blood is considered to be unidirectional and is in the axial 

direction. 

 
The geometry of stenosis in the peripheral region and core region are shown in Figure 
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Where  R z  and  1R z  are the radii of the  with peripheral layer and core region 

respectively such that  1 ( )zzR R , 
0R  and 

0R  are the radii of the normal artery 

and core region of the normal artery respectively; 
P  is the maximum height of the 

stenosis in the peripheral region,  is the ratio of the central core radius to the normal 

artery radius, 
B  is the maximum height of the stenosis in the core region such that 

B P   and 
0z  is the half length of the stenosis. 

0L is the length of stenosis; d  

indicates the location of  the stenosis. 

 

The law of conservation of mass for one dimensional fluid flow in the deformable 

tube gives the following equation of continuity in the core region and peripheral 

region.  
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Where 
Bu  the velocity of the Bingham plastic fluid in the core region and 

Nu  is the 

velocity of the Newtonian fluid in the peripheral layer region. Since the blood flows 

through the narrow arteries at the low shear rates, therefore flow is slow and the 

viscous forces dominate over the inertial forces and thus, the magnitude of the 

convective terms are negligibly small. Therefore in the present model, we have 

neglected the convective terms in the momentum equation and body acceleration is 

taken as external force. 
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B  and 
N  are the shear stresses for the casson fluid and Newtonian fluid 

respectively, 
B and 

N are the densities for cason fluid and Newtonian fluid 

respectively, P  is the pressure and ( )F t  is the body acceleration. 

 

The consecutive equation for Bingham Plastic fluid and Newtonian fluid are 

respectively given by 
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Where B  and N  are the viscosities of the Bingham plastic fluid and Newtonian 

fluid, respectively; y is the yield stress; pR is the radius of the plug flow region. 

The periodic body acceleration in the axial direction is given by 

 

0( ) cos( )bF t a t  
  

 (9) 
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Where 0a  is its amplitude, 2b bf  , 
bf  is its frequency in Hz.,   is the lead angle 

of ( )F t  with respected to the heart action. The frequency of body acceleration 
bf  is 

assumed to be small so that wave effect can be neglected. 

The pressure gradient at any z and t  may be represented as follows. 
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Where 0A the steady component of the pressure gradient is, 1A  is amplitude of the 

fluctuating component and 2p pf   where pf  is the pulse frequency. Both 0A

and 1A  are function of z . 

we introduce the following non-dimensional variables. 
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Where B and N  are pulsatile Reynolds’s number for Bingham plastic fluid and 

Newtonian fluid respectively. 

Using non-dimensional variables, equation (1) and (2) becomes 
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The governing equation of motion given by equation (5) and (6) are simplified  in the 

non dimensional form as 
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Where     ( ) (1 cos ) cos( )f t e t B t       (16) 

 

The consecutive equation for Bingham Plastic fluid and Newtonian fluid are 

respectively given by equation (5) & (6) using non dimensional variables reduce to 
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The boundary conditions are 
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The boundary conditions in the dimensionless form are 
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The non-dimensional volumetric flow rate is given by 
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Can be expressed in the non dimensional form as  
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3. Method of solution 

Since it is not possible to find an exact solution to the system of nonlinear equations 

(14)-(19), the perturbation method is used to obtain the approximate solution to the 

unknowns , ,B N Bu u  and N .when we non-dimensionalize the momentum equations 

(5) and (6) 2

B  and 2

N  occurs naturally and hence it is more appropriate to expand the 

equations (14)-(19) about 2

B  and 2

N . 

Let us expand the plug core velocity
pu , the velocity in the core region Bu  in the 

perturbation series of 2

B  as below (where 2

B <<1)  
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Similarly, using the perturbation series expansion in equation (15) & (18) and 

equating the powers of 2

N , the resulting equations of the peripheral region can be 

obtained as  
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Using perturbation expansion in the given boundary condition and equating constant 

term and the terms containing 2

N  & 2

B  we get  
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On solving equations (29) & (30) using equation (31) we can obtain the values for 

unknowns  

0 1 0 1 0 1 0 1 0 1, , , , , , , , ,p p B B N N B B N Nu u u u u u     . 
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Neglecting the terms of 2( )Bo  and higher power of B  in equation (27), the first 

approximation plug core radius can be obtained as 

      

  
2

0 ( )pR f t k    
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The expression for wall shear stress w  can be obtained as 
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From equation (22), (42) and (43) the volumetric flow rate is given by 
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The expression for effective viscosity e  can be obtained from equations (24) and (45) 
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The second approximation plug core radius 
1pR  can be obtained by neglecting terms 

of 4( )Bo  and higher power of B in equation (30) as 
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From equation (27), (41) & (47), the expression for plug core radius can be obtained 

as 
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4. Result and Discussion 

In order to estimate the effect of body acceleration and slip velocity by modeling 

blood as two layered flow. Perturbation techniques are used to solve the equations 

governing the fluid flow. The effect of pulsatality, stenosis, yield stress of the fluid, 
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pressure gradient, shear stress, plug velocity, effective viscosity are investigated and 

discussed briefly with the help of graphs.  

 

 

 

The velocity profile for different values of body acceleration parameter B and slip 

velocity su & for fixed values of peripheral stenosis height p , pressure gradient e, 

time t wth radial distance r are shown in figure 2. The variation of axial velocity has 

been seen at the peak value of the stenosis i.e. at z=0.  

It is observed that the maximum velocity is attained at r=0, after that it decreases 

gradually with the increase in the radius of the artery r. At the stenotic wall i.e. at 

( )r R z axial velocity is minimum for any value of body acceleration parameter B. 

However velocity is more when we consider the slip velocity at the wall than the no 

slip condition. Axial velocity is further increased with the increase in body 

acceleration.      

Figure 3. Shows the variation of volumetric flow rate with the pressure gradient e for 

different values of yield stress  and for fixed values of 

0 1, 0.5, 0.2, 0.8, 0NL z        . We have seen the effects of both Body 

acceleration and slip velocity on the volumetric flow rate. It is found that the flow rate 

increases with the increase in pressure gradient parameter e for any value of , B . 

However it can be easily seen from the figure that flow rate is highly affected by the 

body acceleration and slip velocity. Flow rate is increases with the increase in body 

acceleration as well as with the increase in slip velocity. It is observed from the figure 

that the magnitude of flow rate in the presence of yield stress (i. e. 0.1  ) is less 

than it’s magnitude in the absence of yield stress (i.e. 0  ). 
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Figure 4. depicts the variation of effective viscosity with the peripheral stenosis height 

for different values of body acceleration and yield stress  .It is observed that 

effective viscosity decreases with the increase in body acceleration.It is also found 

that effective viscosity e increases with the peripheral stenosis height for both the 

cases of no-slip and slip at wall. However increase in the value of yield stress 
increases the value of effective viscosity.The effective viscosity reduces when we 

apply slip at the wall for both the cases in presence and absence of yield stress. 

Figure 5. and Figure 6. Shows the variation of wall shear stress with time t and 

peripheral stenosis height p .from the figure 6. It is observed that wall shear stress 

decreases with the time t for the range 0 180t o o and after that it increases for the 

range180 360t o o . Wall shear stress increases in magnitude with increase in 

peripheral stenosis height. 
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From Figure 6. It is found that wall shear stress is highly affected by the body 

acceleration; in the absence of body acceleration wall shear is low in comparison to the 
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presence of body acceleration. It is depicted that as we increase the body acceleration 

wall shear stress increases. 

Figure 7. Shows the variation of wall shear stress with time t. the variation has been 

shown for a full scale of time (0 360)t t   in degrees. It is found that the body 

acceleration parameter B highly influencing the wall shear stress w in a stenosed 

artery, as body acceleration increases wall shear stress decreases. However, w attains 

it’s minimum at 180t  o and the maximum at 0 , 360t t o o
   

 

Conclusion 

The present mathematical model brings out the many interesting results due to the two 

layered blood flow i. e. due to peripheral layer.  Effective viscosity increases as 

peripheral stenosis size p  increases It is found that plug core radius, wall shear stress, 

pressure drop and flow rate increases as the yield stress  or stenosis size p increases 

while keeping all other parameters constant. It is depicted that axial velocity and flow 

rate increases with the wall slip whereas effective viscosity decreases due to the 

presence of slip velocity. Body acceleration also play a very important role in blood 

flow modeling. Velocity and flow rate increases but wall shear stress decreases with 

the body acceleration. However e  is lowered for both the cases with or without 

stenosis due to the slip velocity. The present study can be extended by considering 

other fluid. In future one can consider the magnetic effect also for further research.   
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