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Abstract 
INTRODUCTION: Fluorescence recovery after photobleaching (FRAP) is a confocal microscopy-

based technique widely used for in vivo quantification of intracellular molecular movements and 

interactions. FRAP is very useful for elucidating several fundamental but complicated cellular 

activities, such as cell membrane diffusion and protein binding. AIM: The aim of this study was to 

investigate whether it is possible to develop stochastic simulation strategies for interpretation of FRAP 

kinetics. METHODS: A simulation algorithm based on a stochastic simulation of the  time evolution 

of coupled reaction-diffusion biochemical systems was developed for investigating and interpreting 

FRAP experiments in terms of diffusion and binding. The proposed algorithm was compared with 

standard deterministic methods that are currently being used for analysis of FRAP curves. RESULTS 

AND DISCUSSION: Predictions of recovery times of FRAP curves and sum of residuals revealed a 

good agreement (Table I), at the level of both timescale and intensity, between the proposed model and 

the standard deterministic methods. The stochastic simulation algorithm presents a firmer physical 

basis that its deterministic counterparts and might be used to successfully model probabilistic events in 

the cell, deciphering information in FRAP experiments that cannot be computed using deterministic 

models.  
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Introduction 
Fluorescence recovery after photobleaching (FRAP) is a confocal microscopy-based technique 

widely used for in vivo quantification of intracellular molecular movements and interactions [1, 2]. 

FRAP is very useful for elucidating several fundamental but complicated cellular activities, such as cell 

membrane diffusion and protein binding. The basic idea of FRAP can be summarized into three steps: 

a/ the molecules within the observing specimen (usually in the cell for in vivo studies) are labeled with 

fluorescent probes, b/ a Region Of Interest (ROI) is bleached by exposure to proper exciting laser light; 

this process renders labeled molecules within the bleached ROI permanently non-fluorescent, c/ due to 

diffusion, the fluorescence is gradually restored within the bleached region; the rate of recovery of 

fluorescence is monitored giving rise to the FRAP curve, which contains information regarding both 

the diffusion potential and the binding interactions of the molecules of interest with the specimen’s 

environment [3, 4]. In the absence of binding reactions, fluorescence is rapidly restored and the FRAP 

curve can be used to yield information regarding the diffusion rate of the molecules. On the other hand, 

longer FRAP recoveries usually imply that molecules’ diffusion is delayed due to binding reactions [5, 

6].  

Deciphering the information from FRAP curves is not a straightforward task. There have been 

proposed several mathematical models [1, 3, 7-13], which have been formulated for proper 

interpretation of FRAP recoveries. Although these models differ in terms of mathematical basis, it is 

generally agreeable that three dominant scenarios might be used to describe any FRAP recovery 

involving a single species of molecules able to either freely diffuse or/and bind to a specific type of 

binding sites: pure diffusion dominant, effective diffusion, and reaction dominant scenarios. In the case 

of pure diffusion almost all fluorescent labeled molecules are assumed free to diffuse (in this case 

recovery for most biological molecules lasts less than 1 sec). Τhe observed recovery can be described 

by a simple diffusion equation, which can be used to quantify the diffusion coefficient of the molecule 

into consideration [14].  When binding occurs faster than diffusion, then the recovery is slowed down 

due to the presence of binding sites that detain fluorescent labeled molecules from moving freely. 

Under the latter conditions, the recovery can be described by a new diffusion coefficient, the so called 

effective diffusion coefficient, which presents a reduced value compared to the free diffusion 

coefficient [3, 15]. The third scenario assumes that diffusion is faster than binding, so fast that it can be 

barely monitored; the recovery, then, depends mainly by the association and dissociation binding 

coefficients, which describe the association rate of a free molecule with a binding site and the 

dissociation rate of a bound complex to a free molecule and an empty binding site. In the reaction 

dominant and effective diffusion cases, recovery is of the order of seconds to minutes [16, 17]. There 

have also been presented models, such as in Sprague et al [7], that have been developed as an unified 

approach able to describe all possible FRAP recoveries in the presence of diffusion and single binding 

site using a single mathematical approach.  

Although FRAP experiments involve confocal microscopy, thus, 3-D volumes are considered, due 

to the complexity of analytical solutions for the 3-D case, most of previous studies have been 

formulated for 1-D [9], or 2-D processes [1, 8, 18], assuming that such solutions approximate to a great 

extent the realistic 3-D solution. Only few studies have explored 3-D solutions [7, 19]. Moreover, most 
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studies have explored only circular bleached spots and have considered homogeneous distributions of 

diffusing molecules and binding sites [1, 3, 7-13]. There is no unified mathematical approach suitable 

for all geometries. The choice of the proper model depends on many aspects, among which, critical 

might be considered the geometry and size of the bleached region, the presence/absence of binding 

reactions, the number of different types of binding sites, and the dimensionality of the formulation. 

Improper model choice might lead to biased estimates of both diffusion and binding coefficients as it 

has been shown in recent literature [13, 20].  

Mathematical models described above share a common reference characteristic: these models are 

based on continuous approximations and traditional ordinary differential equations, which on one hand 

have been successfully used for describing reaction-diffusion kinetics of biochemical systems, but on 

the other hand present four important limitations [21-24]:  First, it is well known that living cells pose 

very low densities (of the order of 2 31 10 mµ −− ) of most key biomolecules (including proteins, 

transcription factors, DNA, molecular regulators etc.) and due to these low molecular densities, many 

important cellular events, such as gene expression and polymerase binding, are governed by stochastic 

effects; such effects can be used to explain the variability of various phenomena at the molecular level 

for isogenic populations as, for example, the difference in expression of the same genes among cells 

sharing the same genetic material [25, 26]. Continuous approximation models are inappropriate for 

investigation of low density populations [24, 25, 27, 28], since only average behaviors are considered. 

Second, continuous approximation models treat binding, which involves association and dissociation of 

biomolecules with suitable binding sites, as a continuous process in time. The latter has been 

questioned in literature [25, 26], since it is well know that binding occurs at discrete time events. For 

high density populations discrete events become less prominent. However, for low density populations, 

such as at intracellular molecular level, the application of continuous approximation models ‘smoothes 

out’ these important discrete fluctuations [29, 30]. Third, most continuous approximation methods have 

been based on the assumption that the cell environment is a homogeneous reaction system. Although 

this assumption facilitates analytical solutions, it has been shown that the reactant molecules of many, 

if not all, cellular biochemical pathways are highly heterogeneously distributed within the cell 

compartments [24, 25]. Fourth, the mathematical formulation of continuous approximation methods 

changes significantly according to the shape of the geometry under investigation [20, 31]. For complex 

geometries, analytic solutions are difficult to compute. Thus, mathematical models based on stochastic 

time evolution appear as plausible, more realistic, than continuous approximations solutions to 

overcome the above limitations; stochastic simulation algorithms, properly formulated, might be a 

useful tool for describing and interpreting the information encoded in FRAP experiments regarding 

molecular populations that are distributed into the cell heterogeneously at low densities. To the best of 

our knowledge, such a stochastic model has not been presented in literature. 

The aim of this study was to investigate whether it is possible to develop stochastic simulation 

strategies for interpretation of FRAP kinetics. The add-on value of such an approach is threefold: a/ 

stochastic simulation can be used for reliable estimation of reaction-diffusion biochemical systems 

involving molecular species occurring at low densities, b/ in the presence of binding, reaction rates are 

not considered constant as in continuous approximation models. Stochastic reaction rates are combined 
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into a single probability density function taking into account the inherent fluctuations of the binding 

process in space and time and are described on a unified framework; the latter scenario is closer to 

realistic conditions [29], in contrast to continuous approximation models that consider association and 

dissociation as independent processes occurring in a continuous manner in space and time, c/ the 

stochastic model is independent on the geometry and size of the bleached spot, in contrast to standard 

models that require special formulations for different geometries (i.e. circular, stripe etc.) [14].  

 

Material and Methods 
Diffusion model 

Diffusion was seen as a Brownian motion process. The Brownian motion is due to collisions with 

molecules (i.e. water molecules), which makes the particles undergo random-walk motion with no 

preferred direction. The average displacement of a molecule depends on the diffusion coefficient and, 

additionally, on the time diffusion step. The probability of a random motion is given by [32]: 

 
2

/ 2

1( , ) exp( )
(4 ) 4d

rP r t
Dt DTπ

−
=  (1) 

 

where t is the time for next event of a random-direction displacement r of a molecule with diffusion 

constant D, d is the dimensionality of the geometry considered and T is the temperature.  

In our experiments we have considered d=2, and T=36oC.  

 

Reaction model 

The binding reaction process was seen as a numerical Monte Carlo procedure based on the pioneer 

work of Gillespie [27]. The basic idea of the Gillespie’s algorithm is to track the exact molecular 

population of chemical species, which are able to interact via multiple reaction channels in a fixed 

volume. The Gillespie’s algorithm was originally proposed to simulate coupled chemical reaction 

systems, while later efforts have extended this algorithm to coupled reaction-diffusion biochemical 

systems [24]. In this study we have suitably modified the Gillespie’s algorithm for simulating FRAP 

recoveries as follows:  

In a FRAP experiment, considering well-stirred distribution of the fluorescent labeled molecule F at 

fixed temperature T, in a fixed volume V inside the cell, which contains homogeneously distributed 

binding sites S, every free molecule F may react with any vacant S to create the complex FS according 

to:  

 

kon

koff
F S FS+ →  (2) 

 

This can be broken down into two elementary reactions: 
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Reaction 1:      

kon
F S FS+ →  

(3) 

 

Reaction 2:      koff
FS F S→ +  (4) 

 

where kon and koff are the association and dissociation coefficients respectively. The 

stoichiometry of such system will be 

 

[ ] 1 1
[ ] 1 1

[ ] 1 1

F
S

FS

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⇒ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (5) 

 

Equation 5 gives the net flow of populations during reactions. For example, if Reaction 1 occurs, 

then the populations of F and S are reduced, whereas the population of FS is increased. For such a 

system the time evolution of the populations would depend from starting concentrations and reaction 

coefficients. The time t to next reaction or next release is assumed to be exponentially distributed 

according to 0 ( )P t : 

 

0
1

( ) exp( )
M

P t a tν
ν =

= −∑  (6) 

 

where M denotes the type reaction (Reaction 1 or Reaction 2, equations 2 and 3 respectively), and a 

is the propensity for a particular reaction. The term propensity reflects the ability of the system to 

restore its equilibrium and it depends on the current state of molecular populations and the association 

and dissociation coefficients. Following any perturbation that changes the molecular population 

distribution over time -in our case this perturbation is diffusion- the system tries to restore its steady 

state by performing vibrations around its equilibrium state. Equation 6 basically gives the probability 

that a particular reaction will happen in the next infinitesimal time interval t. The expectation or mean 

value of such distribution is given by 1/ ( )mean sum a= . A plot of such probability from the 

simulation is given in Figure 8.  

 

Reaction-diffusion simulation algorithm  

The simulation starts by placing F (free), S (binding sites) randomly to the full extent of the 

simulation field (we have tested circular and strip-like spots with radius and width of 0.5 mµ  

respectively. Such settings are common in FRAP experiments [7]). F are allowed to diffuse. S are 

considered immobile. Every F is allowed to react with an empty S forming and FS complex. Then as 
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the simulation proceeds, it gives some time to the system to reach a steady state-equilibrium. This is 

needed because the initial choice of the concentrations is user defined and does not guarantee steady 

state conditions (either for diffusion or reaction). After the steady state has been reached, the region of 

interest (either circular or strip-like) is bleached (after this point, all F inside the bleached region are 

considered as non-fluorescent) and the FRAP curve is measured. The simulation filed is significantly 

bigger than the bleached spot. More specifically, the steps that are required for implementation of the 

proposing stochastic simulation are: 

 

INITIALIZATION 

1. Set time t =0 

2. Set initial numbers for molecular populations NF, NS, NFS  

3. Calculate concentrations according to *1 9[ ] ( )
* *1 9

i
i

N eC nM
V A e

=
−

, where N denotes the number of 

molecules at time t=0, i denotes the different chemical species, V is the volume and A the 

Avogadro number 

4. Set initial values for association ( kon ) and dissociation ( koff ) coefficients  

5. Set initial value for the diffusion coefficient D 

6. Set the geometry and size of the bleached spot and of the simulation field. The simulation 

field should be at least 50 times bigger than the bleached spot [24, 27] 

7. Place within the simulation field randomly, inside and outside the bleached spot, molecules F, 

and binding sites S. There are no initial FS. Store coordinates of initial positioning  

8. Set time sapling step t, time tbleach (time that bleaching occurs; from this time and on, 

recording of the recovery inside the simulated bleached spot is initiated), and time tstop (time 

for terminating the simulation). tbleach should be greater than the time that the system needs to 

restore equilibrium. tstop should be greater than the time needed to restore 99% of initial 

fluorescence inside the bleached spot 

 

FOR THE REACTION SYSTEM 

9. According to P(t) (equation 6) calculate the most probable next event (Reaction 1 or Reaction 

2 – see equations 3 and 4 respectively).  

10. Based on the selected event, update the current molecular populations of NF, NS, and NFS 

according to stoichiometry of the system (see equation 5) 

11. Update the status at each coordinate (initialized at step 8) according to the following three 

scenarios: a/ If at a specific coordinate a new FS complex has been created, then label this 

particular coordinate as FS, which means that at the next event after time t only a dissociation 

of FS to F and S may occur at this coordinate. b/ If an FS complex dissociates to an F and S, 

then label this particular coordinate as F; this F will be able to diffuse or react at next event 

after time t. Moreover, label this particular coordinate as S, which means that an empty 

binding site exists, which can react with a free diffusing F at next event after time t.  
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FOR THE DIFFUSION SYSTEM 

12. Allow free F to diffuse randomly and cover distance r based on to P(r, t) (equation 1). 

13. Update the status at each coordinate as in step 11. 

 

TIME EVOLUTION 

14. Progress time step t. 

a. If t <t bleach, repeat steps 11-14 

b. If t> =t bleach, then label each F inside the bleached spot as non-fluorescent as and all 

remaining F outside the spot as fluorescent. Generate a point at the FRAP curve for 

time t as follows:
0

0

( )
( )

( )
simulation field bleached spot

curve
bleached spot simulation field

F F t
FRAP t

F F t
− −

− −

=  [33], where 

0
simulation fieldF − is the number of fluorescent F inside the simulation field at t=0, 

0
bleached spotF −  is the number of fluorescent F inside the spot of interest at t=0, 

( )bleached spotF t−  is the number of fluorescent F inside the bleached spot of interest at 

t, and ( )simulation fieldF t−  is the number of fluorescent F inside the simulation field at 

t. Repeat steps 11-14. 

c. If t <t stop, then terminate simulation  

 

Comparison with other methods 

The performance of the proposed stochastic simulation algorithm was compared with the model 

proposed by Sprague et al [7], which can be used to describe all possible scenarios of FRAP recoveries. 

According to the above model, the recovery of any FRAP curve involving circular bleached spot and a 

single type of binding sites is given by: 

  

  1 1
1( ) (1 2 ( ) ( )) (1 )eq eqon

curve
off off

F CkFRAP t K qw I qw x
p p p k p k

= − − + −
+ +  (7) 

with 

2 ( )(1 )on

off

kPq
D p k

= +
+  (8) 

 

where w is the radius of the bleached spot, D is the diffusion coefficient, I1 and K1 are the modified 

Bessel functions of 1st and 2nd kind, Feq and Seq are the concentrations of F and S at equilibrium, and p 

is the Laplace variable. Comparison was performed in terms of goodness of fit and predictions of 99% 

of recovery.  
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Results  
Simulation initializations  

Simulations were performed with starting molecular conditions [F]   = 0.041513 nM, [F]   = 3.3626 

nM, and [FS] = 0.041513 nM in a reaction volume of 10 pl considering steady temperature conditions, 

homogeneous molecular distributions and a single binding site, circular bleached spot, and diffusion 

coefficient D=30 2 / secmµ . 

Steady state conditions of the reaction system 

For the pure diffusion case (for kon=10-2 sec-1 and koff=101 sec-1), the system reached equilibrium at 

0.4 sec, for the effective diffusion case (for kon=  103,5 sec-1 and koff = 100 sec-1) at 0.02 sec, and for the 

reaction dominant case (for kon= 10-0.5 sec-1 and koff=10-1 sec-1) 45.1 sec and for the full model case (for 

kon=  102 sec-1 and koff= 10-1 sec-1) 5 sec. Results are given in Figure 1.  

Comparison with deterministic models 

In the case of pure diffusion (Figure 2) the time needed for 99% recovery of fluorescence inside the 

spot was 0.0082 sec, for effective diffusion (Figure 3) 25.5 sec, and for reaction dominant (Figure 4) 17 

sec. Relative predictions for the above scenarios were obtained using deterministic model as described 

in [7] (equation 7). According to this model, recovery times were 0.083 sec, 26.36 sec, and 17.393 sec 

respectively for the pure diffusion, effective diffusion and reaction dominant scenarios. Additional 

simulations were performed for the full model case (Figure 5). Figure 6 illustrates the resulting 

probability density function for the reaction system (equation 6).  

The goodness of fit between the proposed stochastic model and the existing model  of equation 7 

[7] is presented at table I. The goodness of fit was quantified by the sum of residuals (R) of the two 

recovery curves, for each scenario (see Figures 2-5), as proposed in [34] according to the following 

expression: 

 

det1
( ) ( )m

stochastic ermenistict
R frap t frap t

=
= −∑  (9) 

 

Table I: Comparison of the proposed stochastic simulation algorithm with the deterministic 

model [7] of equation 7, in terms of Sum of residuals for different FRAP scenarios  

 

Scenario  Sum of residuals (R) 

Diffusion dominant  0.84 

Effective diffusion 0.94 

Reaction Dominant  0.71 

Full Model 0.76 

 

After having confirmed that the proposed stochastic model gives reasonable results and agrees with 

other standard methods, experiments were performed to investigate the effect of the bleach spot 

geometry to the prediction of the recovery. We have simulated circular spots of different radius and we 
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have compared the recoveries prediction for a circular and strip spot of the same area for the pure 

diffusion case. Results are presented in Figures 7 and 8. Finally, table II gives a full report of 

information that can be extracted using the proposed algorithm for the effective diffusion case.  

 

Table II: Analytic presentation of information that can be obtained using the proposed stochastic 

simulation algorithm for the effective diffusion scenario  

 

Reaction coefficients kon =  103.5 sec-1 

koff = 100 sec-1  

Sampling step 0.5 sec (time step that the FRAP curve was 
sampled) 

Starting Concentrations for each 
compartment  

[F]   = 0.041513 nM 
[S]   = 0.033211 nM 
[FS] = 0.041513 nM 

In a reaction volume of V=10pl 

Total starting concentrations 
[F]   = 3.3626 nM 
[S]   = 2.6901 nM 
[FS] = 3.3626 nM 

*1 9 ( )
* *1 9

iCountOfMolecules econcentration nM
V Avogadro e

=
−

,  

i denotes the different chemical 
species  

Reaction Volume V     = 10 pl  

Recovery prediction 
Radius=0.5 µm: 25.5 sec 
Radius=1.1 µm: 130.5 
sec  

(time needed for 99% recovery) 

Reaction equilibrium ≈0.02 sec 

Time that Reaction Equilibrium is 
reached for any possible starting 
population considering volume V is 
fixed 

kon
F S FS+ →  
If a reaction will happen, then it will 
happen at a mean time after the 
previous event 

After equilibrium:  
0.00023684 sec  

kon
F S FS+ →  
If a release will happen, then it will 
happen at a mean time after the 
previous event 

After equilibrium: 
0.00017486 sec  

_ _Number of reactions
Feq FSeq+

 0.75768 /sec In equilibrium state for a fixed 
Volume V 

_ _Number of releashes
Feq FSeq+

 0.75768 /sec In equilibrium state for a fixed 
Volume V 

Ratio of free to bound molecules 0.32223 In equilibrium state for a fixed 
Volume V 
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Figure 1: Convergence to equilibrium for the pure diffusion, effective diffusion, reaction dominant and 

full model scenarios. 

 
Figure 2: Comparison of the proposed stochastic simulation algorithm with the deterministic model of 

equation 7 for the pure diffusion scenario 
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Figure 3: Comparison of the proposed stochastic simulation algorithm with the deterministic model of 

equation 7 for the effective diffusion scenario 

 
Figure 4: Comparison of the proposed stochastic simulation algorithm with the deterministic model of 

equation 7 for the reaction dominant scenario 
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Figure 5: Comparison of the proposed stochastic simulation algorithm with the deterministic model of 

equation 7 for the full model scenario 

 
Figure 6: Probability density function of the Gillespie algorithm (equation 6). The red line gives the 

probability of occurrence of a reaction of the type
kon

F S FS+ → , whereas the blue line gives the 

probability of occurrence of a release of the type 
koff

FS F S→ +   
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Figure 7: Effect of the size (radius) of circular bleached spots to the recovery of fluorescence in the 

bleached region 

 

 
Figure 8: Comparison of recoveriesw resulted from circular and strip-like bleached spots of the same 

area    
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Discussion 
In this study, a stochastic model was presented for numerical simulation of FRAP experiments. The 

model was compared with standard methods presented in literature [1, 7, 34], with promising results. 

Predictions of recovery times and sum of residuals revealed a good agreement (Table I), at the level of 

both timescale and intensity. Figure 2 illustrates the diffusion dominant case, which agrees with the 

solution of equation 7 with sum of residuals 0.84. Reaction equilibrium was reached at about 0.4 sec 

for any possible starting molecular concentrations for a fixed volume of V=10pl. Diffusion dominates, 

with each diffusing protein covering a mean distance of 0.18424 µm/0.0005sec. Time for 99% recovery 

was 0.0082 sec. In the effective diffusion case (Figure 3), agreement with the solution of equation 7 

resulted in 0.94 sum of residuals. Recovery to 99% of fluorescence occurred after 25.5 sec, while 

steady state was restored in 0.02 sec. In this case, bleached molecules F find it hard to enter or escape 

the bleached spot since, almost after a every single dissociation, a fast association follows. If an 

association will occur, then it will occur at 0.00023684 sec after the previous event. On the other hand, 

if a dissociation will occur, then it will happen after 0.00017486 sec. The number of associations and 

dissociations divided by the molecular population of F is 0.75768 reactions /sec. Moreover, the ratio of 

free F to bound F (in the form of FS) was 0.32223. In Figure 4 the reaction dominant scenario is 

investigated. The agreement with the model of equation 7 in terms of sum of residuals was 0.71. 

Equilibrium was accomplished at 4 sec, whereas time needed for 99% of recovery was 45.1 sec. The 

slower recovery is due to binding reactions that delay F from diffusing. Under these conditions, 

diffusion can be considered negligible. The next most probable event (association, dissociation or no 

event) was determined based on a probability density function (equation 6), which depended on both 

association and dissociation coefficients and the current number of molecular populations. This 

probability is exponentially distributed as shown at Figure 8. Based on this probability, most probable 

times to next association and dissociation were determined 0.00016634 sec and 0.00013668 sec 

respectively. The ratio of associations to total population of F in equilibrium per unit of time was 

0.064319 /sec, whereas the ratio of dissociations to total population of F per unit of time was 0.065025 

/sec. The ratio of free to bound F in equilibrium was found 0.56734. The latter means that more than 

50% of F are detained by binding sites S. Finally, for the full model case (Figure 5), a good fit was 

found (sum of residuals 0.76) with the model of equation 7. The full model case is used for describing 

FRAP recoveries that cannot be explained by any of the three main scenarios. For the full model, 

reaction equilibrium was achieved after 5 sec. Next association will occur after 0.00018618 sec and 

next dissociation after 0.00015898 sec. The total number of reactions per equilibrium concentration of 

free and bound F per unit of time was 0.064014 /sec and the respective ratio of dissociations per unit of 

time was 0.064696 /sec. Finally, the ratio of free to bound F was 0.53467. It worth noticing that the 

algorithm makes no assumptions for equilibrium concentrations, but converge to equilibrium 

concentrations independently on the initial molecular populations, which are user defined. The 

deterministic models, such that of equation 7 require assumptions for estimating equilibrium 

concentrations.  
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Figure 7 illustrates the effect of the size of circular bleached spot to recovery. The larger the 

diameter of the spot the longer fluorescence recovers. Similar predictions are obtained by standard 

deterministic models [1, 7, 34]. In figure 8 a comparison is performed for circular and strip-like 

bleached regions. The recovery for strip-like regions depends on the width of the strip and we get the 

same results with a circular bleach spot only if the width of the strip equals to the radius of the circular 

spot. It is worth noticing that the proposed stochastic simulation algorithm needs no special formulation 

for strip-like or any other shape bleached regions, in contrast to standard deterministic methods [3, 7, 

34, 35].  

The above results might be regarded as an indication that the proposed stochastic simulation may be 

used for proper interpretation of FRAP. To the best of our knowledge, this effort comprises the first 

investigation towards stochastic simulation of FRAP experiments. The add-on value of the proposed 

model lies on two major issues: a/ firmer physical basis, and most importantly, b/ extraction of 

additional information that cannot be estimated using the deterministic methods presented in literature.  

The firmer physical basis is due to the following: i/ Stochastic reaction rates change dynamically 

according to the current state of the population of reactant species and are not assumed constant, ii/ 

Association and dissociation are not considered as independently occurring processes, but are 

combined into a single probability density function, accounting in this way for inherent fluctuations 

and correlations of binding in time. The probabilistic manner of the proposed method enables the 

description of the reaction system under simulation by a unique probability density function, according 

to which the next most probable event is decided: will it be an association of the type
kon

F S FS+ → , 

between a free diffusing F with an empty binding site S, will it be a dissociation of a binding complex 

of the type 
koff

FS F S→ +  to a free diffusing F and to an empty binding site S, or a random diffusion 

will occur?  

Moreover, information that can be extracted using the proposed stochastic simulation algorithm but 

cannot be extracted by standard deterministic methods are: i/ an exact estimation of molecular 

concentrations at equilibrium conditions, ii/ the coordinates of associations and dissociations, which 

make possible, without any special mathematical formulation, to investigate phenomena like 

anomalous diffusion (i.e. the diffusing proteins form aggregates that exhibit different diffusion 

coefficients), iii/ the recovery of the system to equilibrium following any perturbation (such as 

diffusion in our case) can be investigated in space and time, iv/ Dynamic estimation of time interval-

distributions regarding next association or dissociation, as well as the ratio of free to bound F in 

equilibrium and the number of associations and dissociations per unit of time (see table II), v/ it is 

possible to quantify and interpret the fluctuations of molecular populations. 

 

The computational burden of the algorithm depends on the starting molecular populations and the 

time sampling step. For low density concentrations of the order of 1000 molecules, for the full model 

scenario, the algorithm converges at 1500 sec, in contrast to the deterministic model of equation 7, 

which gives instantaneous estimations.  

 



e-Περιοδικό Επιστήµης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

  

                                                                                                          64 

64

Future work 
The proposed stochastic simulation algorithm can be used to interpret FRAP experiments considering 

geometries of various sizes, well-stirred conditions, fixed volume, steady temperature and single 

binding sites. Future efforts should concentrate on testing this algorithm on real and simulated FRAP 

curves, expand the algorithm to spatially inhomogeneous systems, modify the algorithm for application 

in realistic 3-D scenarios and consider more than one binding sites.  
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